
Ladybug LabVIEW Sample Code

Overview

This document introduces the user to using Ladybug power sensors in a LabVIEW

environment. It assumes familiarity with LabVIEW but does not require expertise. It

demonstrates key functions including:

 Sensor Initialization

 Sensor Setup (Frequency, Averages, Measurement Units)

 CW Measurements

 Pulse Measurements

 Ratio Measurements

An example test harness (with source code) is included. The user interface is shown in

figure 1. It is written as a queue-based state machine and is designed to be easy to

understand. It will work with one or more sensors.

Note: All LabVIEW VI’s are written in LabVIEW 8.5.1.

Figure 1: Test Harness Interface. Note that changes may be incorporated for cosmetic reasons or as

new functionality is added. The interface may also change depending on some selections.

Exercising the Test Harness

The test harness is an interactive application designed to be similar to the front panel of

more traditional power meters. Extra features, such as the plot, were added to emphasize

some of the benefits of the Ladybug Sensor.

The software has many capabilities and is easy to use. A few of the settings and

techniques are shown here to assist you in getting started.

Software Installation

To install the software, simply run the installer and it will copy all files to the appropriate

locations.

Setting the Frequency

To set the frequency, change the value in the frequency control (shown below in yellow).

You may also change the units in either place (shown in red) as necessary. These

changes will take effect immediately.

Note that this will only change the frequency for the active sensor. If more than one

sensor is connected, the others will not change. If you are performing ratio

measurements, the settings for Sensor A can be copied to Sensor B by pressing the Mirror

Sensor button.

Figure 2: The frequency may be changed by any combination of the frequency value (shown in

yellow) and the units (shown in red). Note that the Mirror Sensors button (shown in green) is only

visible during ratio measurements.

Setting the Power Units

To set the power units, simply select the units from either of the drop-down lists (shown

in yellow). Note that the larger list is not shown during ratio measurements – it will show

either “dB” (if the measurement units are in any logarithmic units) or blank (for linear

units such as Watts or Volts).

Figure 3: Power units can also be changed in multiple places, except when the measurement is either

a CW or Pulse Ratio.

Making a CW Measurement

The default measurement when the system starts is CW. Generally speaking, this can be

performed without any difficulty. To switch back to CW from another measurement,

simply select CW from the drop-down list (shown below in yellow).

Figure 4: The default measurement type is CW. Measurements will be made continuously unless the

Trigger In control (in green) is set to something other than "Internal Continuous".

Making a Pulse Measurement

Similarly, pulse measurements are made by selecting the Pulsed value from the drop-

down list. Note that the additional quantities Duty Cycle, Peak, Average, and Crest

Factor (all shown in yellow) appear after this selection is made. Note that 5xx series

sensors cannot make pulse measurements even though this option may be selected.

Figure 5: The additional pulse measurements are shown on the right. The units for duty cycle are

alway percent and the units for crest factor are always dB. The units for the other parameters are

always the same as the power units (except for pulse ratio).

Making a Ratio Measurement

Ratio measurements are made by selecting either of the Ratio options (CW or pulsed).

CW is shown here. Not surprisingly, ratio measurements require two sensors for the

results to make sense. If the power units (in yellow) are logarithmic, the displayed power

units (in green) will be “dB”. If the power units are linear (such as watts or volts), the

displayed power units will be blank.

Using and Modifying the Code

Sensor Communication

Communication with LadyBug power sensors is done through the index, the serial

number, or the address of the sensor. In this example code, all communication is done

through the address. This is because the address covers more functionality than the

others and because it makes the code more flexible. For example, the user cannot change

the serial number of a sensor but they can change the address.

Unless otherwise noted, each VI may be found in the Settings folder.

Additional VI’s will be added to give users full functionality as time permits.

Initializing the Sensors

Before the sensors can be used, they must be initialized. The code performs additional

steps as well, but we will focus on the steps necessary for any application. You may need

the additional steps depending upon your application.

The first step in this process is to obtain the sensor list. This is followed by initializing

each sensor. This initialization only needs to be done once.

In the test harness code, these steps are performed as shown in the following figures.

Figure 6: "Get Sensor List" in the case structure.

Figure 7: "Initialize All Sensors" in the case structure.

In more detail, the front panel of the Get Sensor List VI is shown below. It retrieves the

relevant information from each sensor and returns it in an array of clusters.

Figure 8: Get Sensor List VI front panel.

Sensors are initialized by address using the Initialize Sensor (Address) VI shown below.

Figure 9: Initialize Sensor (Address) VI front panel.

An easy way to initialize all sensors is shown below:

Figure 10: Easy Initialization example (Example 1.vi). This example may be found in the examples

folder.

Sensor Identification

The ID VI makes the LED blink several times on the power sensor at the given address.

This VI can be run on its own by simply typing a valid value for the address in the Inputs

tab of the VI.

Figure 11: The ID function does not return a value. It is used to physically identify the sensor at the

given address.

Setting the Frequency

To set the power sensor frequency, use the Set Frequency (Address) VI. Note that the

frequency must be in Hertz. You may want to account for this before calling this VI (as

was done in the test harness code).

Figure 12: With these parameters, the power sensor at address 191 would be set to a frequency of 837

MHz.

Setting the Power Units

To set the power units, use the Set Power Units VI. Possible units include dBm, dBW,

dBkW, dBuV, dBmV, dBV, Watts, Volts, and dB Relative.

Figure 13: With these parameters, the Set Power Units VI will set the power sensor at address 191 to

dBm.

Making a CW Measurement

The Get CW Measurement (Address) VI will measure the CW power for the sensor at the

given address in the current units of the sensor.

Figure 14: Using this VI, a measurement of -70.835 dBm was taken from the power sensor at address

191. The address was set on the input tab (not shown).

To make a complete measurement, see the CW Measurement Example vi in the example

directory.

Figure 15: The CW Measurement Example shows how to take continuous CW measurements. Note

that the address (188) will probably have to be modified for your needs.

Making a Pulse Measurement

The Get Pulse Measurement (Address) VI will measure the pulse power for the sensor at

the given address in the current units of the sensor.

Figure 16: The Pulse Measurement VI is similar in format to the CW Measurement VI but note that

it has four outputs.

To make a complete measurement, see the Pulse Measurement Example vi in the

example directory.

Figure 17: Note that the crest factor calculation is performed externally from the pulse measurement.

This may change in future versions.

Making a Ratio Measurement

Ratio measurements simply involve setting up and measuring power levels from two

sensors. There is no single VI that performs this measurement.

The Ratio Measurement Example VI demonstrates how to perform these measurements.

Figure 18: This example shows a CW ratio measurement of two sensors at 1 GHz. Note that units

are treated differently in ratio measurements.

Adding to Existing Projects

The VI’s distributed with this code can be added directly to any existing project. It is

recommended that you add the entire folder to your project to ensure that the functions

are readily available and easy to find.

Advanced Code Use

From the list in the appendix, it is clear that there is a substantial amount of functionality

that is not supported at this time. We have focused our efforts on those functions which

would be most needed.

In the event that you wish to use a function which is not supported, however, it is not

difficult to add a function. It is highly recommended that you review some of the

existing VI’s in the Settings folder before proceeding. Follow these steps:

1) Open the Ladybug Sample Code LabVIEW project.

2) Open Template.vi (at the top level of the project).

3) Use Save As to save the Template.vi the Settings folder. Be sure to select

“Copy”, “Open Additional Copy”, and “Add copy to Ladybug Sample

Code.lvproj” as shown below.

Figure 19: Save As Options must be selected as shown in this figure.

4) From the Project Explorer, expand “Dependencies”, “user.lib”, and

“LB_API2.lvlib” as shown below.

Figure 20: The items to be expanded are shown in blue. A complete list of all functions is included at

the lowest level.

5) The VI’s listed under LB_API2.lvlib are the lowest level VI’s for each of the

functions. Select the one that you want and drag it into the (renamed) template

VI, as shown in the following figure.

Figure 21: At this point, the low level VI has been added to the template VI but nothing has been

connected (including the error in and error out terminals).

6) Create controls and indicators in the template VI as necessary and connect them

to the connector pane. Edit the icon as needed. Add comments and

documentation as appropriate.

7) Save the VI. It may now be used just as any of the other VI’s provided.

APPENDIX

The following table lists all DLL functions and their corresponding VI’s. Note that not

all functions have VI’s at this time. All VI’s are in the settings folder.

DLL Function VI
LB_AddressConflictExists Not Available
LB_BlinkLED_Addr ID (Address).vi
LB_BlinkLED_SN Not Available
LB_BlinkLED_Idx Not Available
LB_ChangeAddress Not Available
LB_DriverVersion Not Available
LB_GetAddress_Idx Not Available
LB_GetAddress_SN Not Available
LB_GetAntiAliasingEnabled Get Anti Alias (Address).vi
LB_GetAutoPulseEnabled Not Available
LB_GetAutoPulseEnabled Not Available
LB_GetAverages Get Averages (Address).vi
LB_GetBestMatchOpt Not Available
LB_GetCalAndWtyOption Not Available
LB_GetCalDueDate Not Available
LB_GetCalOptExpDate Not Available
LB_GetConnectorOption Not Available
LB_GetCWReference Get CW Reference (Address).vi
LB_GetDoubleSidedLimit Not Available
LB_GetDutyCycleEnabled Not Available
LB_GetDutyCyclePerCent Not Available
LB_GetFilterOpt Not Available
LB_GetFirmwareVersion Not Available
LB_GetFrequency Get Frequency (Address).vi
LB_GetIndex_Addr Not Available
LB_GetIndex_SN Not Available
LB_GetLimitEnabled Get Limit Enabled (Address).vi
LB_GetMeasurementPowerUnits Not Available
LB_GetModelNumber_Addr Not Available
LB_GetModelNumber_Idx Not Available
LB_GetModelNumber_SN Not Available
LB_GetOffset Not Available
LB_GetOffsetEnabled Not Available
LB_GetPulseCriteria Not Available
LB_GetPulseReference Not Available
LB_GetRecorderOutEnabled Not Available
LB_GetRecorderOutOption Not Available
LB_GetRecorderOutSetup Not Available

LB_GetResponse Not Available
LB_GetResponseEnabled Not Available
LB_GetSerNo_Addr Not Available
LB_GetSerNo_Idx Not Available
LB_GetSingleSidedLimit Not Available
LB_GetTriggerOpt Not Available
LB_GetTTLTriggerInEnabled Get TTL Trigger In Enabled (Address).vi
LB_GetTTLTriggerInInverted Get Trigger In Polarity (Address).vi
LB_GetTTLTriggerInTimeOut Get Trigger In Timeout (Address).vi
LB_GetTTLTriggerOutEnabled Get Trigger Out (Address).vi
LB_GetTTLTriggerOutInverted Get Trigger Out Polarity (Address).vi
LB_GetWtyOptExpDate Not Available
LB_InitializeSensor_Addr Initialize Sensor (Address).vi
LB_InitializeSensor_Idx Not Available
LB_InitializeSensor_SN Not Available
LB_UninitializeSensor_SN Not Available
LB_IsSensorConnected_Addr Not Available
LB_IsSensorConnected_SN Not Available
LB_MeasureCW Get CW Measurement (Address).vi
LB_MeasureCW_PF Get CW PF Measurement (Address).vi
LB_MeasurePulse Get Pulse Measurement (Address).vi
LB_MeasurePulse_PF Get Pulse PF Measurement (Address).vi
LB_ReadStateFromINI Not Available
LB_Recall Not Available
LB_ResetCurrentState Reset Current State (Address).vi
LB_ResetRegStates Not Available
LB_SensorCnt Not Available
LB_SensorList Not Available
LB_SetAddress_Idx Not Available
LB_SetAddress_SN Not Available
LB_SetAntiAliasingEnabled Set Anti Alias (Address).vi
LB_SetAutoPulseEnabled Not Available
LB_SetAverages Set Averages (Address).vi
LB_SetBestMatchOpt Not Available
LB_SetCalAndWtyOption Not Available
LB_SetCalDueDate Not Available
LB_SetCalOptExpDate Not Available
LB_SetConnectorOption Not Available
LB_SetCWReference Set CW Reference (Address).vi
LB_SetDoubleSidedLimit Set Double Sided Limit (Address).vi
LB_SetDutyCycleEnabled Not Available
LB_SetDutyCyclePerCent Not Available
LB_SetFilterOpt Not Available
LB_SetFrequency Set Frequency (Address).vi
LB_SetLimitEnabled Set Limit Enabled (Address).vi

LB_SetMeasurementPowerUnits Set Power Units.vi
LB_SetModelNumber Not Available
LB_SetOffset Not Available
LB_SetOffsetEnabled Not Available
LB_SetPulseCriteria Not Available
LB_SetPulseReference Not Available
LB_SetRecorderOutEnabled Not Available
LB_SetRecorderOutOption Not Available
LB_SetRecorderOutSetup Not Available
LB_SetResponse Not Available
LB_SetResponseEnabled Not Available
LB_SetSerialNumber Not Available
LB_SetSingleSidedLimit Set Single Sided Limit (Address).vi
LB_SetSysTimeOut Not Available
LB_SetTriggerOpt Not Available
LB_SetTTLTriggerInEnabled Set TTL Trigger In Enabled (Address).vi
LB_SetTTLTriggerInInverted Set Trigger In Polarity (Address).vi
LB_SetTTLTriggerInTimeOut Set Trigger In Timeout (Address).vi
LB_SetTTLTriggerOutEnabled Set Trigger Out (Address).vi
LB_SetTTLTriggerOutInverted Set Trigger Out Polarity (Address).vi
LB_SetWtyOptExpDate Not Available
LB_Store Not Available
LB_WillAddressConflict Not Available
LB_WriteStateToINI Not Available
PP_AcquireTrace Not Available
PP_CheckTrigger Not Available
PP_CnvtTrace Not Available
PP_CurrTrace2AnalysisTrace Not Available
PP_GatePositionIsValid Not Available
PP_GetAvgMode Not Available
PP_GetAvgResetSens Not Available
PP_GetFilter Not Available
PP_GetGateAveragePower Not Available
PP_GetGateCrestFactor Not Available
PP_GetGateDroop Not Available
PP_GetGateDutyCycle Not Available
PP_GetGateEndPosition Not Available
PP_GetGateEndTime Not Available
PP_GetGateFallTime Not Available
PP_GetGateMode Not Available
PP_GetGateOverShoot Not Available
PP_GetGatePeakPower Not Available
PP_GetGatePRF Not Available
PP_GetGatePRT Not Available
PP_GetGatePulseWidth Not Available

PP_GetGatePulsePower Not Available
PP_GetGateRiseTime Not Available
PP_GetGateStartEndPosition Not Available
PP_GetGateStartEndPositionTime Not Available
PP_GetGateStartEndTime Not Available
PP_GetGateStartPosition Not Available
PP_GetGateStartTime Not Available
PP_GetMarkerAmp Not Available
PP_GetMarkerDeltaAmp Not Available
PP_GetMarkerDeltaTime Not Available
PP_GetMarkerMode Not Available
PP_GetMarkerPosition Not Available
PP_GetMarkerPositionTime Not Available
PP_GetMeasurementThreshold Not Available
PP_GetPeaks_Idx Not Available
PP_GetPeaks_Val Not Available
PP_GetPeaksFromTr_Idx Not Available
PP_GetPeaksFromTr_Val Not Available
PP_GetPoles Not Available
PP_GetSweepDelay Not Available
PP_GetSweepDelayMode Not Available
PP_GetSweepHoldOff Not Available
PP_GetSweepTime Not Available
PP_GetTrace Not Available
PP_GetTraceAvgPower Not Available
PP_GetTraceAvgs Not Available
PP_GetTraceCCDF Not Available
PP_GetTraceCDF Not Available
PP_GetTraceCrestFactor Not Available
PP_GetTraceDC Not Available
PP_GetTraceLength Not Available
PP_GetAnalysisTraceLength Not Available
PP_GetTracePkPwr Not Available
PP_GetTracePulsePower Not Available
PP_GetTracePwrDensity Not Available
PP_GetTriggerEdge Not Available
PP_GetTriggerLevel Not Available
PP_GetTriggerOut Not Available
PP_GetTriggerSoure Not Available
PP_MarkerNextPk Not Available
PP_MarkerPkHigher Not Available
PP_MarkerPkLower Not Available
PP_MarkerPosIsValid Not Available
PP_MarkerPrevPk Not Available
PP_MarkerToFirstPk Not Available

PP_MarkerToLastPk Not Available
PP_MarkerToLowestPk Not Available
PP_MarkerToPk Not Available
PP_ResendState Not Available
PP_ResetTraceAveraging Not Available
PP_SetAnalysisTrace Not Available
PP_SetAvgMode Not Available
PP_SetAvgResetSens Not Available
PP_SetClosestSweepTimeUSEC Not Available
PP_SetFilter Not Available
PP_SetGateEndPosition Not Available
PP_SetGateEndTime Not Available
PP_SetGateMode Not Available
PP_SetGateStartEndPosition Not Available
PP_SetGateStartEndTime Not Available
PP_SetGateStartPosition Not Available
PP_SetGateStartTime Not Available
PP_SetMarkerDeltaTime Not Available
PP_SetMarkerMode Not Available
PP_SetMarkerPosition Not Available
PP_SetMarkerPositionTime Not Available
PP_SetMeasurementThreshold Not Available
PP_SetPoles Not Available
PP_SetState Not Available
PP_SetSweepDelay Not Available
PP_SetSweepDelayMode Not Available
PP_SetSweepHoldOff Not Available
PP_SetSweepTime Not Available
PP_SetTraceAvgs Not Available
PP_SetTriggerEdge Not Available
PP_SetTriggerLevel Not Available
PP_SetTriggerOut Not Available
PP_SetTriggerSoure Not Available
PP_TakeSweep Not Available
LB_DiagCW Not Available
LB_DiagStoreCoeff Not Available
LB_DiagGetRawBuff Not Available
LB_GetExtendedAveragingEnabled Get Extended Averaging (Address).vi
LB_SetExtendedAveragingEnabled Set Extended Averaging (Address).vi
LB_GetExtendedAveraging Get Extended Averages (Address).vi
LB_SetExtendedAveraging Set Extended Averages (Address).vi
LB_ResetExtendedAveraging Reset XAvg (Address).vi
LB_GetMaxHoldEnabled Get Max Hold (Address).vi
LB_SetMaxHoldEnabled Set Max Hold (Address).vi
LB_ResetMaxHold Reset Max Hold (Address).vi

LB_Get75OhmsEnabled Not Available
LB_Set75OhmsEnabled Not Available
PP_GetPulseEdgesPosition Not Available
PP_GetPulseEdgesTime Not Available
PP_AnalysisTraceIsValid Not Available
LB_DiagGetLinAvgOfNBuff Not Available
DIAG_AttachCnt Not Available
LB_IsDeviceInUse_Idx Not Available
LB_IsDeviceInUse_Addr Not Available
LB_IsDeviceInUse_SN Not Available
LB_SaveCurrStateTo Not Available
LB_RestoreCurrStateFrom Not Available
LB_GetNamedStateCount Not Available
LB_GetNamedStateNames Not Available
LB_DeleteNamedState Not Available

