

LADYBUG TECHNOLOGIES LLC

LB_API2 Supplemental
Interface

X86 Interface for 64 bit systems

Jon Sigler

8/5/2013

Test system developers may be required to transition from 32 bit to 64 bit systems. Ladybug has
supported this transition in the past by having direct support for both 32 bit and 64 bit environments.
However, cross platform support has been limited. This supplement addresses the need for cross bitness
platform support for LadyBug products.

Contents
Overview ... 2

Using the Solution ... 2

System Requirements and Preparation .. 2

Quick Start ... 2

More on Getting up and Running ... 3

Next Steps ... 3

Paths and more Paths ... 3

Code Modifications ... 5

Using the Registry ... 6

Deployment .. 7

Possible Issues ... 7

Description .. 8

Appendix – List of Function Calls .. 10

Overview
This is intended be a practical response to the cross platform requirements.

The following definitions apply:

 32/32 – refers to a 32 bit application running in a 32 bit environment (such as XP)

 64/64 – refers to a 64 bit application running in a 64 bit environment (such as 64 bit Windows 7)

 32/64 – refers to a 32 bit application running in a 64 bit environment

I may use the term “conventional” to refer to 32/32 and 64/64 solutions collectively. And I may refer to

32/64 as “cross-bit” or “cross-bitness” solutions.

Sometimes I’ll refer to the INI or ini file. By this I mean the file named LB_API2_32_64.ini

Using the Solution

System Requirements and Preparation
 Windows 7, 64 bit or later

 LadyBug applications (64 bit driver) must be installed and functioning

 Microsoft Visual Studio 2010 (optional)

 The zipped file must be unzipped to directory of your choosing

 LadyBug power sensor

 RF Power source

Quick Start
If you have a 32 bit solution and you want to run on Windows 7, 64 bit this outlines what you’ll need to

do. It should be something like this:

1. Install the LadyBug power meter application on the target Windows 7 64-bit computer. Make

sure the power meter application works before going on to the next steps.

2. Get your executable and its development environment on the 64 bit computer.

3. Copy the “necessities” directory into your executable directory

4. Run the VB test harness to check things out (it should be in the executable directory). If it runs

then the system is working.

5. Change your application so it points to LB_API2_32_64.dll instead of LB_API2.dll.

LB_API2_32_64.dll adds three calls to the power meter interface.

6. Call StartSocket() before calling anything else (e.g. LB_SensorCnt()). See the VB.Net or C# code

for examples. It’s pretty simple.

7. Your code should now work.

8. Call StopSocket() when you are shutting down.

There is an Excel example and we have NI LabVIEW stuff coming in the next few days.

More on Getting up and Running

Note: The test harness applications can be run as stand-alone applications. To do so, go to the following

directory and run:

<unzipped location>\Sockets\TestHarness_VB_NET\bin\Debug\ TestHarness_VB_NET.exe

…or…

<unzipped location>\Sockets\TestHarness_CSharp\bin\Debug\ TestHarness_CSharp.exe

If you have Visual Studio 2010, open the previously unzipped “LB_Sockets” solution. The solution

contains five projects. One project is the socket client (32 bit side). One is the socket server (64 bit side),

two are test harnesses and one is the RegsitryEditor. We’ll be running one of the test harnesses. Run

either the following two projects:

 Test Harness_VB_Net (more complete)

 Test Harness_CSharp

After starting the project of your choosing use the following process:

 Click the LB_SensorCnt() button in the upper left. If you have a sensor connected the

count should show a positive number.

 Click the LB_SensorList() button. A list of sensors should appear in adjacent list box.

 Select a sensor by clicking on one of the sensors in the list. The current device information

should be filled in and appear to the right of the list box.

 Select the “Init. CW & Pulse Mod” tab.

 In the upper left area of the tab click the “LB_InitializeSensor_Addr()” button. Wait

about 5 seconds. The word “Success” should appear next to right of the button.

 Locate the “LB_MeasureCW()” button on the right side of the same tab.

 Click the button. The measure power level should appear in the text box below the button.

Additional test harness information is available in the documentation accompanying these examples

(see documentation folder in the VB.NET or C# projects) or refer to documentation shipped with the

original sample code supplied.

Next Steps
There are two additional items which need attention.

 Ensuring that the paths are set correctly using the best scheme.

 Modifying your code to start the sockets

Paths and more Paths

If you examine the description at the end of the document you’ll note that this solution is composed of a

few pieces. And these pieces must work together. As you’ll see in the next section, your call to

StartSockets starts the solution. For the solution to work the following has to occur:

 A “StartSockets…” call must be made from your application.

 LB_API2_32_64.dll must know where LB_SocketServer.exe is located. It assumes that

LB_SocketServer.exe is in the same directory in which it is located.

 LB_API2_32_64.dll and LB_SocketServer.exe must use the same socket. The default socket or

port is 27713. This is modifiable.

 The INI file should be in the same directory (LB_API2_32_64.INI)

 LB_API2.dll must be located in the same directory as LB_SocketServer.exe

Under normal circumstances if you co-locate these pieces things will work just fine. This is accomplished

by asking the system for the current execution path. However, not all development systems play well

with others. Some systems bias or change the execution path.

To resolve these issues we have provided three means of startup. The three means of startup are:

1. INI file initialization – this requires the INI file to be properly set and then you must start by

calling StartSocket. This will start by looking for specific registry entries. If these entries do not

exist or the use INI file bit is set, then the INI file is used.

2. Explicit initialization – requires that you call StartSocketExplicit. In this case the registry and INI

file is ignored.

3. Registry initialization – this requires registry entries to be set properly and then call StartSocket.

Note that if the use INI file bit is set, the registry is ignore and INI file is used.

 First is the easiest and is summarized below:

 Co-locate all the various pieces of the solution in your executable directory.

 Fill out the INI file to your liking.

 Call StartSocket (see next section) – then proceed normally (your old code will work)

However, this method can fail because some development systems (most notably, NI LabVIEW) resets

the executable path to Windows\System32 (or other another path) when loaded. This is most

problematic during development. So that when LB_API2_32_64.dll tries to start LB_SocketSever.exe it

won’t be able to find LB_SocketServer because the path is set to the Windows\System32 directory.

This means that you must override the path information normally obtained from the operating system.

You can use either of the next two methods to accomplish this.

Note: Clearly you can choose to relocate the items to the path preferred by your development

environment. However, I’ll leave such exercises to those more familiar with the development

environment in question.

Instead of the normal call, StartSocket, call StartSocketExplicit. This call allows you to pass the path and

socket number explicitly to LB_API2_32_64.dll. The path must be the correct path and all the various

pieces are co-located in this path.

Another alternative is to use the registry. We have provided a small application that allows you to setup

the registry (yes we’ve provide the code). If you choose this method you can call StartSocketl. All of the

path information will be obtained from the registry. This alternative is very flexible in that you can

relocate and executable without having to rebuild – very handy.

One of these methods should allow you to start up regardless of your environment.

Code Modifications

These test harnesses are the same test harnesses that have been previously provided with a few vital

exceptions. The first call is made when the application starts and the form is loaded. A final call is made

when the application ends.

VB.NET
Change #1:

Private Sub RgrTest_Tabbed_Load(sender As Object, e As System.EventArgs) Handles

Me.Load

 Dim rslt As Integer = StartSocket()

End Sub

Change #2:

Private Sub RgrTest_Tabbed_FormClosing(sender As Object, e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 Dim rslt As Integer = StopSocket()

End Sub

C#
Change #1:

private void RgrTest_Tabbed_Load(object sender, EventArgs e)

{

int rslt = LB_API2_Declarations.StartSocket();

}

Change #2:

private void RgrTest_Tabbed_FormClosing(object sender, FormClosingEventArgs e)

{

int rslt = LB_API2_Declarations.StopSocket();

}

The StartSocket call must be made prior to any call to the LadyBug API. Also, when the application closes

call StopSocket for an orderly shutdown.

Change #3:

Finally, the DLL called by the 32 bit application has been change from LB_API2.dll to LB_API2_32_64.dll.

Below is a typical declaration for this application:

Public Declare Function LB_SensorCnt Lib "LB_API2_32_64.dll" () As Integer

For those familiar with the 32/32 or the 64/64 solutions, you’ll note the calls are identical except for the

library name contained in the declaration of the API in the using application. As stated previously, the

library name has changed from LB_API2.dll to LB_API2_32_64.dll and three calls have been

added. In all other respects the code is identical. The three calls are StartSocket, StartSocketExplicit and

Stop Socket. Either StartSocket or StartSocketExplicit must be called before any other call is made to

LB_API2_32_64.dll. StopSocket should be called when shutting down.

So software used to communicate with the LadyBug sensors via 32/32 or 64/64 can be used as is with

the following modifications excepting the previously noted changes. Again, those modifications are the

changing of the library to LB_API2_32_64.dll and the need to call “StartSocket” before making

any calls to the LadyBug API and “StopSocket” on shut down.

Over 100 calls have been ported - virtually all of the power meter or LB_* calls. The pulse profiling

(PP_*) calls have not been ported. However, the source code for the sockets interface is provided and

you are free to add any calls you wish. The calls provided in this interface are listed in the appendix.

Using the Registry
If you have the VS 2010 environment open you’ll see the RegistryEditor project. If you run this project

you’ll see the following window:

The application is pretty selfexplanatory. The code is available and is very straight forwared. But you can

get help while running the app by getting focus on the control and then pressing F1. Here is a summary:

 Default Path – location of the executables and the LB* files

 Socket Number (or Port Number) – normally it can be between 1 and 65535. I’ve constrained it

to between 10,000 and 60,000.

 Use INI file – if true it will use the INI file instead of the registry. This allows you to retain registry

while temporarily using an INI file. If it is false it will use the values save in the registry.

 Make Server Visible – if true the command line interface will be visible. If false (normal

operation) it will not be visible but you may get a flash as it appears and disappears quickely.

 Start Server – if true (default) it will start the socket server normally. If, usually for diagnostic

purposes, it is false then you’ll need to start LB_SocketServer manually or by some other means.

Get button retrieves the settings from the registry. Save, saves the settings to the registry. And Cancel

exits the application without saving.

Deployment
All of the files must be collocated to function properly. These include the following as a minimum

assuming all have been compiled as release. If some have been compiled as debug additional files may

be required :

 LadyBug applications or driver installed

 Your executable and any additional supporting files

 LB_API2.dll (64 bit version)

 LB_SocketServer.exe

 LB_API_32_64.dll

 lb_api2_32_64.ini

Possible Issues
 One problem has already been covered in detail. This is related to the executable path. We’ve

provided three methods of starting the system. One of these methods should overcome any

issue assuming all of the various pieces are co-located.

 The server application is a console application with the console being hidden. You may see a

quick flash when the socket application loads. This is the loading and unloading of the console

window. If the console remains visible check the following two items:

o Lb_api2_32_64.ini is collocated

o The value of [VISIBLE]COMM = 0

 When communicating via sockets, port conflicts invariably arise. The port number used by the

LadyBug 32/64 solution in an INI file. This INI file is accessed by both the socket client and socket

server. Change or revise the port number as required. The contents of lb_api2_32_64.ini

are shown below:

[COMM]

SOCKET=27713

[VISIBLE]

STATE=1

o The [COMM] SOCKET entry controls the port number used.

o The [VISIBLE] STATE variable controls whether the server console is visible. Making it

visible can be handy for diagnosis.

 Since this application uses sockets (localhost only) you’ll need to ensure it is enabled. For this

you’ll need the following entry in “C:\WINDOWS\System32\drivers\etc\host” shown below:

localhost name resolution is handled within DNS itself.

127.0.0.1 localhost

 IIS (internet information services) must be enabled, on and unblocked by your virus program.

 In the extreme, you may notice some measurement speed degradation. This is normal and

unavoidable. If you must have the speed then you’ll need to employ conventional solutions.

Description
Accompanying this document is a pair of test harnesses (VB.Net and C#) and components needed to

resolve this issue. Below is a depiction of how our 32/32 bit and 64/64 bit (same general diagram applies

to both):

Your 32 bit Application
(or test harness)

LB_API2.dll
(32 bit)

And what follows is a depiction of how 32/64 (cross-bit) support is achieved:

Your 32 bit Application
(or 32-bit test harness)

LB_API2_32_64.dll
(32 bit DLL)

LB_SocketServer.exe
(64 bit console application)

LB_API2.dll
(64 bit)

Sockets Communication Layer

The solution we chose was to interpose a sockets communication layer between the 32 bit application

and the 64 bit LadyBug API. The interface seen by the 32-bit application is, in general, identical to LB-

API2.dll interface. Three calls have been added to the interface:

 StartSocket() which starts the socket server and initializes the sockets communication layer. This

call uses the INI file or registry settings. This (or StartSocketExplicit) must be called once before

any other calls are made.

 StartSocketExplicit(path, socket) starts up the socket server and initializes the sockets

communication layer. This call uses the path and socket information passed to it thus overriding

INI file or registry settings. This (or StartSocket) must be called once before any other calls are

made.

 StopSocket() which closes the sockets communication layer in an orderly fashion.

Source for LB_API2_32_64.dll and Socket Server have been provided. So that if you need to supplement

the current API you may do so.

Appendix – List of Function Calls
 StartSocket

 StartSocketExplicit

 StopSocket

 LB_DriverVersion

 LB_SensorCnt

 LB_BlinkLED_SN

 LB_BlinkLED_Addr

 LB_BlinkLED_Idx

 LB_SensorList

 LB_GetAddress_SN

 LB_GetAddress_Idx

 LB_SetAddress_SN

 LB_AddressConflictExists

 LB_WillAddressConflict

 LB_GetSerNo_Addr

 LB_ChangeAddress

 LB_GetModelNumber_SN

 LB_GetModelNumber_Addr

 LB_IsSensorConnected_SN

 LB_IsSensorConnected_Addr

 LB_SetAutoPulseEnabled

 LB_GetAutoPulseEnabled

 LB_SetCWReference

 LB_GetCWReference

 LB_SetDoubleSidedLimit

 LB_GetDoubleSidedLimit

 LB_SetDutyCycleEnabled

 LB_GetDutyCycleEnabled

 LB_SetDutyCyclePerCent

 LB_GetDutyCyclePerCent

 LB_GetFirmwareVersion

 LB_GetIndex_SN

 LB_GetIndex_Addr

 LB_SetLimitEnabled

 LB_GetLimitEnabled

 LB_SetMeasurementPowerUnits

 LB_GetMeasurementPowerUnits

 LB_GetModelNumber_Idx

 LB_SetOffsetEnabled

 LB_GetOffsetEnabled

 LB_SetPulseReference

 LB_GetPulseReference

 LB_SetResponseEnabled

 LB_GetResponseEnabled

 LB_SetResponse

 LB_SetResponse_Flat

 LB_GetResponse

 LB_GetResponse_Flat

 LB_GetSerNo_Idx

 LB_SetSingleSidedLimit

 LB_GetSingleSidedLimit

 LB_InitializeSensor_Idx

 LB_MeasureCW_PF

 LB_MeasurePulse_PF

 LB_ReadStateFromINI

 LB_WriteStateToINI

 LB_Recall

 LB_Store

 LB_ResetCurrentState

 LB_ResetRegStates

 LB_SetAddress_Idx

 LB_SetOffset

 LB_GetOffset

 LB_SetCalDueDate

 LB_GetCalDueDate

 LB_GetCalOptExpDate

 LB_GetWtyOptExpDate

 LB_GetCalAndWtyOption

 LB_GetRecorderOutOption

 LB_GetBestMatchOpt

 LB_GetTriggerOpt

 LB_GetFilterOpt

 LB_InitializeSensor_SN

 LB_InitializeSensor_Addr

 LB_GetFrequency

 LB_SetFrequency

 LB_GetAverages

 LB_SetAverages

 LB_GetPulseCriteria

 LB_SetPulseCriteria

 LB_GetTTLTriggerInEnabled

 LB_SetTTLTriggerInEnabled

 LB_GetTTLTriggerInInverted

 LB_SetTTLTriggerInInverted

 LB_GetTTLTriggerInTimeOut

 LB_SetTTLTriggerInTimeOut

 LB_GetTTLTriggerOutEnabled

 LB_SetTTLTriggerOutEnabled

 LB_GetTTLTriggerOutInverted

 LB_SetTTLTriggerOutInverted

 LB_GetAntiAliasingEnabled

 LB_SetAntiAliasingEnabled

 LB_MeasureCW

 LB_MeasurePulse

 LB_GetExtendedAveragingEnabled

 LB_SetExtendedAveragingEnabled

 LB_GetExtendedAveraging

 LB_SetExtendedAveraging

 LB_ResetExtendedAveraging

 LB_GetMaxHoldEnabled

 LB_SetMaxHoldEnabled

 LB_ResetMaxHold

 LB_Get75OhmsEnabled

 LB_Set75OhmsEnabled

 LB_IsDeviceInUse_Addr

 LB_IsDeviceInUse_SN

 LB_MeasureBurst_DBM

